(i)	$\begin{aligned} & x=10 t \\ & y=10 \sqrt{3} t-4.9 t^{2} \end{aligned}$	B1 B1 [2]	Allow $x=20 \cos 60^{\circ} t$ Allow $y=20 \sin 60^{\circ} t-\frac{g}{2} t^{2}$ or $y=17.3 t-\frac{9.8}{2} t^{2}$	
(ii)	Substitute $t=\frac{x}{10}$ in equation for y $\Rightarrow y=\sqrt{3} x-0.049 x^{2}$	M1 A1 [2]	Substitution of a correct expression for t. Notice that this is a given result	
(iii)	When $y=0, x=\frac{1.732}{0.049}$ (or 0) The range is 35.3 m	M1 A1 [2]	Use of $y=0$, or $2 \times$ Time to maximum height	
(iv)	When $x=20, y=1.732 \times 20-0.049 \times 20^{2}$ Height is 15.04 m so passes below the bird whose height is 16 m	M1 A1 [2]	Use of equation of trajectory Special Case Allow SC2 for substituting $y=16$ in the trajectory, showing the equation for x has no real roots and concluding the height of the ball is always less than 16 m . This can also be done with the equation for vertical motion.	
(iv)	Alternative: Using time When $x=20, t=2$ $y=10 \sqrt{3} \times 2-4.9 \times 2^{2}$ Height is 15.04 m so passes below the bird whose height is 16 m	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \end{aligned}$	Use of equation for the height	
(iv)	Alternative: Maximum height The maximum height of the ball (is 15.3 m) Since $15.3<16$, it is always below the bird	$\begin{gathered} \text { M1 } \\ \text { A1 } \end{gathered}$	A valid method for finding the maximum height	

Question		Answer	Marks	Guidance
3	(i)	Either Both components of initial speed Horiz $31 \cos 20^{\circ}$ (29.1) Vert $31 \sin 20^{\circ}$ (10.6) $\begin{aligned} & \text { Time to goal }=\frac{50}{31 \cos 20^{\circ}} \\ & \quad=1.716 \ldots \mathrm{~s} \end{aligned} \begin{aligned} h & =31 \times \sin 20^{\circ} \times 1.716+0.5 \times(-9.8) \times(1.716)^{2} \end{aligned} ~ \begin{aligned} & h=3.76(\mathrm{~m}) \end{aligned}$ So the ball goes over the crossbar	B1 M1 A1 M1 A1 E1	No credit if sin-cos interchanged The components may be found anywhere in the question Attempt to use horizontal distance \div horizontal speed Use of one (or more) formula(e) to find the required result(s) relating to vertical motion within a correct complete method. Finding the maximum height is not in itself a complete method. Allow 3.74 or other answers that would round to 3.7 or 3.8 if they result from premature rounding Dependent on both M marks. Allow follow through from previous answer
		Or Both components of initial speed $h=31 \sin 20^{\circ} \times t-4.9 t^{2}$ Substitute $h=2.44 \Rightarrow t=(0.26$ or $) 1.90$ Substitute $t=1.90$ in $x=31 \cos 20^{\circ} \times t$ $x=55.4$ Since $55.4>50$ the ball goes over the crossbar	B1 M1 A1 M1 A1 E1	May be found anywhere in the question. No credit if sin-cos interchange If only 0.26 is given, award A0 Allow this mark for substituting $t=0.26$ Allow $x=7.6$ following on from $t=0.26$ Dependent on both M marks. Allow FT from their value for 55.4.
		Or Both components of initial speed $h=31 \sin 20^{\circ} \times t-4.9 t^{2}$ Substitute $h=2.44 \Rightarrow t=(0.26$ or $) 1.90$ $\begin{aligned} \text { Time to goal } & =\frac{50}{31 \cos 20^{\circ}} \\ & =1.716 \ldots \mathrm{~s} \end{aligned}$ Since $1.90>1.72$ the ball goes over the crossbar	B1 M1 A1 M1 A1 E1	May be found anywhere in the question. No credit if sin-cos interchanged Attempt to use horizontal distance \div horizontal speed Dependent on both M marks. Allow follow through from previous answer

		Or Use of the equation of the trajectory $y=x \tan 20^{\circ}-\frac{9.8 x^{2}}{2 \times 31^{2} \times \cos ^{2} 20^{\circ}}$ Substituting $x=50$ $\Rightarrow y=3.76$ So the ball goes over the crossbar	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { A1 } \\ & \text { M1 } \\ & \text { A1 } \\ & \text { E1 } \end{aligned}$	Correct substitution of $\alpha=20^{\circ}$ Fully correct Dependent on both M marks. Follow through from previous answer
3	(ii)	Any one reasonable statement	B1 [1]	Accept The ground is horizontal The ball is initially on the ground Air resistance is negligible Horizontal acceleration is zero The ball does not swerve There is no wind The particle model is being used The value of g is 9.8 Do not accept g is constant

4		mark	
	$v^{2}=11^{2}+2 \times(-9.8) \times 2.4$	n1	notes
	$v=8.6$ so $8.6 \mathrm{~m} \mathrm{~s}^{-1}$.	A1 $v^{2}=u^{2}+2 a s$ or complete sequence of correct suvat. Accept sign errors in substitution.	
All correct			
cao [Award all marks if 8.6 seen WWW] Do not condone ± 8.6.			
		3	

5		mark	notes
	Usual notation either consider height: Attempt to substitute for u and a in $s=u t+\frac{1}{2} a t^{2}$ $y=30 \sin 35 t-4.9 t^{2}$ Need $y=0$ for time of flight T giving $T=\frac{30 \sin 35}{4.9}(=3.511692 \ldots)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Accept: g as $g, \pm 9.8, \pm 9.81, \pm 10 ; u=30 ; \mathrm{s} \leftrightarrow \mathrm{c}$. Derivation need not be shown cao. Any form. May not be explicit.
	Or Consider time to top Attempt to substitute for u and a in $v=u+a t$ $v=30 \sin 35-9.8 t$ Need $v=0$ and to double for time of flight T giving $T=\frac{30 \sin 35}{4.9}(=3.511692 \ldots)$	$\begin{aligned} & \text { M1 } \\ & \text { A1 } \\ & \text { B1 } \\ & \text { A1 } \end{aligned}$	Accept: g as $g, \pm 9.8, \pm 9.81, \pm 10 ; u=30 ; \mathrm{s} \leftrightarrow \mathrm{c}$. Derivation need not be shown cao. Any form. May not be explicit.
	then $\begin{aligned} & x=30 \cos 35 T \\ & \text { so } x=30 \cos 35 \times \frac{30 \sin 35}{4.9}(=86.29830 \ldots) \end{aligned}$ Required time for sound is $x / 343$ Total time is $3.511692 \ldots+0.251598 \ldots=$ $3.76329 \ldots$.. so 3.76 s (3 s. f.)	M1 F1 M1 A1	Accept $\mathrm{s} \leftrightarrow \mathrm{c}$ if consistent with above FT for their time Condone consistent s $\leftrightarrow \mathrm{c}$ error (which could lead to correct answer here). FT from their x cao following fully correct working throughout question.
		8	

6		mark	notes
(i)	Vertica $y=8 t-4.9 t^{2}$ Horizontally $x=12 t$	M1 A1 B1 3	Use of $s=u t+0.5 a t^{2}$ with $g= \pm 9.8, \pm 10$. Accept $u=0$ or $14.4 \ldots$ or $14.4 \sin \theta$ or $u \sin \theta$ but not 12. Allow use of +3.6 . Accept derivation of -4.9 not clear. cao.
(ii)	either Require $y=-3.6$ so $-3.6=8 t-4.9 t^{2}$ Use of formula or $4.9(t-2)\left(t+\frac{18}{49}\right)=0$ Roots are 2 and $-\frac{18}{49}(=-0.367346 \ldots)$ Horizontal distance is $12 \times 2=24$ so 24 m or Require $y=-3.6$ so $-3.6=8 t-4.9 t^{2}$ Eliminate t between $x=12 t$ and $-3.6=8 t-4.9 t^{2}$ so $0=3.6+\frac{8 x}{12}-\frac{4.9 x^{2}}{144}$ Use of formula or factorise + ve root is 24 so 24 m or Methods that divide the motion into sections Projection to highest point (A) Highest point to level of jetty (B) Level of jetty to sea (C) Combination of A, B and C may be used (A) 0.8163.. s; 9.7959.. m: (B) 0.816...s; 9.7959.. m (C): 0.3673... s; 4.4081... m	M1 M1 A1 M1 F1 M1 M1 A1 M1 F1 M1 M1 A1 A1 A1	Equating their y to ± 3.6 or equiv. Any form. A method for solving a 3 term quadratic to give at least 1 root. Allow their y and re-arrangement errors. WWW. Accept no reference to $2^{\text {nd }}$ root [Award SC3 for $t=2$ seen WWW] FT their \boldsymbol{x} and t. FT only their t (as long as it is +ve and is not obtained with sign error(s) e.g. -ve sign just dropped) Equating their y to ± 3.6 or equiv. Any form. Expressions in any form. Elimination must be complete Accept in any form. May be implied. A method for solving a 3 term quadratic to give at least 1 root. Allow their y and re-arrangement errors. FT from their quadratic after re-arrangement. Must be +ve . Attempt to find times or distances for sections that give the total horizontal distance travelled Correct method for one section to find time or distance Any time or distance for a section correct $2^{\text {nd }}$ time or distance correct (The two sections must not be A and B) cao
	AndMathsTutor.com	8	

